In this paper, we revisit the rotation averaging problem applied in global Structure-from-Motion pipelines. We argue that the main problem of current methods is the minimized cost function that is only weakly connected with the input data via the estimated epipolar geometries.We propose to better model the underlying noise distributions by directly propagating the uncertainty from the point correspondences into the rotation averaging. Such uncertainties are obtained for free by considering the Jacobians of two-view refinements. Moreover, we explore integrating a variant of the MAGSAC loss into the rotation averaging problem, instead of using classical robust losses employed in current frameworks. The proposed method leads to results superior to baselines, in terms of accuracy, on large-scale public benchmarks. The code is public. https://github.com/zhangganlin/GlobalSfMpy
翻译:在本文中,我们重新审视全球结构-运动管道中采用的轮换平均率问题。我们认为,当前方法的主要问题是最大限度地降低成本功能,这种功能与估计的上极地地理分布的输入数据联系薄弱。我们提议通过直接将不确定性从点对应信息传播到旋转平均率,更好地模拟基本噪音分布模式。这种不确定性是免费获得的,方法是考虑两面改进的雅各布人。此外,我们探索将MAGSAC损失的变式纳入轮换平均率问题,而不是使用当前框架中采用的传统强力损失。拟议方法的结果在准确性方面优于大规模公共基准的基线。代码是公开的。https://github.com/zhanghganlin/GlobalSfMpy。该代码是公开的。https://gthub.com/zhangganlin/GlobalSfMpy。</s>