The continuum emission from radio galaxies can be generally classified into different morphological classes such as FRI, FRII, Bent, or Compact. In this paper, we explore the task of radio galaxy classification based on morphology using deep learning methods with a focus on using a small scale dataset ($\sim 2000$ samples). We apply few-shot learning techniques based on Twin Networks and transfer learning techniques using a pre-trained DenseNet model with advanced techniques like cyclical learning rate and discriminative learning to train the model rapidly. We achieve a classification accuracy of over 92\% using our best performing model with the biggest source of confusion being between Bent and FRII type galaxies. Our results show that focusing on a small but curated dataset along with the use of best practices to train the neural network can lead to good results. Automated classification techniques will be crucial for upcoming surveys with next generation radio telescopes which are expected to detect hundreds of thousands of new radio galaxies in the near future.
翻译:无线电星系的连续排放一般可以分为不同的形态类别,如FRI、FRIII、Bent、Bent或Contracting。在本文中,我们探讨利用深层学习方法进行基于形态的无线电星系分类的任务,重点是使用小规模数据集(2000美元样本);我们应用基于双子网络的几发学习技术,并使用预先训练的DenseNet模型,使用诸如周期学习率等先进技术以及迅速培训该模型的歧视性学习等先进技术转让学习技术。我们利用我们最佳的性能模型,在Bent和FRIII类型星系之间产生最大混淆的来源,实现超过92 ⁇ 的分类精确度。我们的结果显示,在利用最佳做法培训神经网络的同时,侧重于一个小型但经过整理的数据集,可以带来良好的结果。自动化分类技术对于与下一代无线电望远镜即将进行的调查至关重要,这些望远镜可望在近期内探测数十万个新的无线电星系。