Anomaly detection in medical images refers to the identification of abnormal images with only normal images in the training set. Most existing methods solve this problem with a self-reconstruction framework, which tends to learn an identity mapping and reduces the sensitivity to anomalies. To mitigate this problem, in this paper, we propose a novel Proxy-bridged Image Reconstruction Network (ProxyAno) for anomaly detection in medical images. Specifically, we use an intermediate proxy to bridge the input image and the reconstructed image. We study different proxy types, and we find that the superpixel-image (SI) is the best one. We set all pixels' intensities within each superpixel as their average intensity, and denote this image as SI. The proposed ProxyAno consists of two modules, a Proxy Extraction Module and an Image Reconstruction Module. In the Proxy Extraction Module, a memory is introduced to memorize the feature correspondence for normal image to its corresponding SI, while the memorized correspondence does not apply to the abnormal images, which leads to the information loss for abnormal image and facilitates the anomaly detection. In the Image Reconstruction Module, we map an SI to its reconstructed image. Further, we crop a patch from the image and paste it on the normal SI to mimic the anomalies, and enforce the network to reconstruct the normal image even with the pseudo abnormal SI. In this way, our network enlarges the reconstruction error for anomalies. Extensive experiments on brain MR images, retinal OCT images and retinal fundus images verify the effectiveness of our method for both image-level and pixel-level anomaly detection.
翻译:医学图像中的异常检测是指用培训集中的正常图像来识别异常图像。 多数现有方法都用自我重建框架来解决这一问题, 它倾向于学习身份映像, 并降低对异常的敏感度。 为了缓解这一问题, 在本文件中, 我们提议建立一个新型的普罗克西桥图像重建网络( Proxy- briced 图像重建网络 (ProxyAno ), 用于在医学图像中检测异常。 具体地说, 我们使用一个中间代名来将输入图像和重建的图像连接起来。 我们研究不同的代理类型, 我们发现超像素图像( SI) 是最佳的。 我们设置了每个超像素图像中的所有像素图像的强度, 作为平均强度, 并将此图像标注为SI。 拟议的普罗克西亚诺由两个模块组成, Proxyxricripital 图像重建模块( Proxyterminal) 和一个图像重建模块。 我们用一个记忆来将正常图像的特征通信混为 SIS, 而记忆通信则不适用于异常图像, 校正校正的图像, 和SI 的校验校正的图像。 我们用一个模型的校正的校正的校正方法, 我们的校正的校正的校正的模型的模型的模型的模型, 和SIS的校正的校正的模型的校正的图像, 的校正的校正的校正的图像。