When applied to autonomous vehicle settings, action recognition can help enrich an environment model's understanding of the world and improve plans for future action. Towards these improvements in autonomous vehicle decision-making, we propose in this work a novel two-stage online action recognition system, termed RADACS. RADACS formulates the problem of active agent detection and adapts ideas about actor-context relations from human activity recognition in a straightforward two-stage pipeline for action detection and classification. We show that our proposed scheme can outperform the baseline on the ICCV2021 Road Challenge dataset and by deploying it on a real vehicle platform, we demonstrate how a higher-order understanding of agent actions in an environment can improve decisions on a real autonomous vehicle.
翻译:在应用到自主车辆设置时,行动识别有助于丰富环境模型对世界的理解,改进未来行动计划。为了改进自主车辆决策的这些改进,我们在这项工作中提议建立一个名为RADACS的新颖的两阶段在线行动识别系统。RADACS提出主动物剂检测问题,并将关于从人类活动识别中获得的行为体关系的想法改编成直截了当的两阶段行动检测和分类管道。我们表明,我们提议的计划可以超过ICCV2021路挑战数据集的基线,并通过将它安装在真正的车辆平台上,我们展示了对环境中的代理物行为有更高层次的理解如何改善关于真正自主车辆的决定。