We introduce three adaptive time series learning methods, called Dynamic Model Selection (DMS), Adaptive Ensemble (AE), and Dynamic Asset Allocation (DAA). The methods respectively handle model selection, ensembling, and contextual evaluation in financial time series. Empirically, we use the methods to forecast the returns of four key indices in the US market, incorporating information from the VIX and Yield curves. We present financial applications of the learning results, including fully-automated portfolios and dynamic hedging strategies. The strategies strongly outperform long-only benchmarks over our testing period, spanning from Q4 2015 to the end of 2021. The key outputs of the learning methods are interpreted during the 2020 market crash.
翻译:我们引入了三种适应性时间序列学习方法,称为动态模型选择(DMS)、适应性组合(AE)和动态资产配置(DAA),这些方法分别处理金融时间序列中的模型选择、组合和背景评估。我们巧妙地使用方法预测美国市场四个关键指数的回报,包括VIX和Yield曲线的信息。我们展示了学习结果的财务应用,包括完全自动化组合和动态套期战略。这些战略大大优于我们测试期(从2015年Q4到2021年底)的长效基准。在2020年市场崩溃期间,对学习方法的关键产出进行了解释。