In this paper, we compute the exact values of the minimum output entropy and the completely bounded minimal entropy of quantum channels acting on matrix algebras $\mathrm{M}_n$ belonging to an infinite number of large classes of quantum channels. We also give a upper bound of the classical capacity which is an equality in some cases. For that, we use the theory of quantum groups and our results rely on a new and precise description of bounded Fourier multipliers from $\L^1(\mathbb{QG})$ into $\L^p(\mathbb{QG})$ for $1 < p \leq \infty$ where $\mathbb{QG}$ is a suitable locally compact quantum group and on the automatic completely boundedness of these multipliers that this description entails. We also connect egrodic actions of (quantum) groups to the topic of computation of the minimum output entropy and the completely bounded minimal entropy of channels. Finally, we investigate entangling breaking and $\mathrm{PPT}$ Fourier multipliers and we characterize conditional expectations on von Neumann algebras which are entangling breaking.
翻译:在本文中, 我们计算了最小输出 entropy 和完全约束的最小量子信道的精确值, 以及完全约束的最小量子信道的最小值, 其价格为$\ mathrm{M ⁇ n$, 属于无限数量量子频道。 我们还给出了经典能力的上限, 在某些情形下, 它是一个平等的典型能力。 为此, 我们使用量子组理论, 并且我们的结果依赖于对受约束的 Fourier 乘数的新和精确描述, 从$\L11 (\ mathbb ⁇ G}) 到$1美元 < p\ p\leq\leq\ infty$, 其中$$是合适的本地紧重量子频道。 我们还将( Quantum) 组的血压动作与计算最小输出 entropy 和 完全约束的最小量子频道的 。 最后, 我们调查 破碎和 $mathrem{PPT} $\ intyftylegran $, 其中的四倍 倍 倍 的预期值是质定数。