We show that there is a dense set $\ourset\subseteq \mathbb{N}$ of group orders and a constant $c$ such that for every $n\in \ourset$ we can decide in time $O(n^2(\log n)^c)$ whether two $n\times n$ multiplication tables describe isomorphic groups of order $n$. This improves significantly over the general $n^{O(\log n)}$-time complexity and shows that group isomorphism can be tested efficiently for almost all group orders $n$. We also show that in time $O(n^2 (\log n)^c)$ it can be decided whether an $n\times n$ multiplication table describes a group; this improves over the known $O(n^3)$ complexity. Our complexities are calculated for a deterministic multi-tape Turing machine model. We give the implications to a RAM model in the promise hierarchy as well.
翻译:我们显示有一组订单的密集值 $ourset\ subseteq \ mathbb{N} 美元和恒定值 $,这样,我们就能及时决定每1美元 $(n_2(\log n)\ c) 美元 乘数表是否代表异形顺序 $(美元) 。 这比一般的 $ ⁇ O(\log n) 美元- 时间复杂度大得多, 并表明对几乎所有组订单的不形态主义可以有效测试 $( $ )。 我们还显示, 随着时间的推移, $(n_ 2 (\log n) {c) 美元 的乘数表是否代表一个组; 这比已知的 $O( n_3) 美元 复杂度更好。 我们的复杂度被计算为确定性多色谱图解动机器模型。 我们给一个有希望的系统模型带来的影响 。