We review the Random Batch Methods (RBM) for interacting particle systems consisting of $N$-particles, with $N$ being large. The computational cost of such systems is of $O(N^2)$, which is prohibitively expensive. The RBM methods use small but random batches so the computational cost is reduced, per time step, to $O(N)$. In this article we discuss these methods for both classical and quantum systems, the corresponding theory, and applications from molecular dynamics, statistical samplings, to agent-based models for collective behavior, and quantum Monte-Carlo methods.
翻译:我们审查了由美元粒子组成的互动粒子系统的随机批量方法(RBM),该方法的费用很大。这些系统的计算成本是高得令人望而却步地昂贵的O(N)2美元。成果管理制方法使用少量但随机的批量,因此计算成本按时间步骤降低到$(N)美元。在本篇文章中,我们讨论了古典和量子系统的方法、相应的理论以及分子动态、统计抽样、以代理为基础的集体行为模型和量子蒙特-卡洛方法的应用。