We prove tight mixing time bounds for natural random walks on bases of matroids, determinantal distributions, and more generally distributions associated with log-concave polynomials. For a matroid of rank $k$ on a ground set of $n$ elements, or more generally distributions associated with log-concave polynomials of homogeneous degree $k$ on $n$ variables, we show that the down-up random walk, started from an arbitrary point in the support, mixes in time $O(k\log k)$. Our bound has no dependence on $n$ or the starting point, unlike the previous analyses [ALOV19,CGM19], and is tight up to constant factors. The main new ingredient is a property we call approximate exchange, a generalization of well-studied exchange properties for matroids and valuated matroids, which may be of independent interest. In particular, given function $\mu: {[n] \choose k} \to \mathbb{R}_{\geq 0},$ our approximate exchange property implies that a simple local search algorithm gives a $k^{O(k)}$-approximation of $\max_{S} \mu(S)$ when $\mu$ is generated by a log-concave polynomial, and that greedy gives the same approximation ratio when $\mu$ is strongly Rayleigh. As an application, we show how to leverage down-up random walks to approximately sample random forests or random spanning trees in a graph with $n$ edges in time $O(n\log^2 n).$ The best known result for sampling random forest was a FPAUS with high polynomial runtime recently found by \cite{ALOV19, CGM19}. For spanning tree, we improve on the almost-linear time algorithm by [Sch18]. Our analysis works on weighted graphs too, and is the first to achieve nearly-linear running time for these problems.


翻译:我们证明,自然随机行走的时间界限与自然随机行走的时间界限是紧密混杂的,根据类固醇、确定性分布和与对co-concouple 多元分子基底有关的更普遍的分布。对于在一组美元元素的地面上排名为$美元,或更普遍的分布与对等度19美元(美元)的对等多元分子基底的对等混合,我们显示,从支持的任意点开始的下降随机行走,时间混合为$O(k\log) 。我们的约束对美元或起始点没有依赖,与以往的对数分析不同[ALOV19,CGM19], 或更普遍的分布与对等度19美元(美元)的对等值多的对等值多的对等值多的对等值。 特别是,给一个函数(美元) 已知的对等离值的对等值的对等值的对等值对等值 。 (nou) livo k) 的对数值对数值对数值的对数值而言,我们的直径直径比对数值对数值的对数值对数值的对数值对数值对数值的对数值的对数值的对数值的对时间的对时间的对, 。 当我们来说,大约的对数值对数值对数值对数值对数值对数值对数值是意味着是意味着对数值对数值对数值对时间的对数值对数值对数值对数值对数值对数值对数值对数值对数值对数值对数值对。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月2日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员