We present a high-order entropy stable discontinuous Galerkin (ESDG) method for the two dimensional shallow water equations (SWE) on curved triangular meshes. The presented scheme preserves a semi-discrete entropy inequality and remains well-balanced for continuous bathymetry profiles. We provide numerical experiments which confirm the high-order accuracy and theoretical properties of the scheme, and compare the presented scheme to an entropy stable scheme based on simplicial summation-by-parts (SBP) finite difference operators. Finally, we report the computational performance of an implementation on Graphics Processing Units (GPUs) and provide comparisons to existing GPU-accelerated implementations of high-order DG methods on quadrilateral meshes.
翻译:我们为三角曲线上的两维浅水方程(SWE)提出了一个高分序稳定不连续的Galerkin(ESDG)方法,所提出的办法保持了半分解的对流性对流性不平等,并保持了连续测深剖面的平衡。我们提供了数字实验,确认了对流性精确度和理论特性,并将提出的办法与基于简化和逐个部分(SBP)有限差异操作员的对流性对流性稳定办法作了比较。最后,我们报告了关于图形处理单位(GPUs)的实施的计算性能,并比较了四边形模件现有GPU加速实施高分级DG方法的情况。