In this paper, we develop and analyze a novel numerical scheme for the steady incompressible Navier-Stokes equations by the weak Galerkin methods. The divergence-preserving velocity reconstruction operator is employed in the discretization of momentum equation. By employing the velocity construction operator, our algorithm can achieve pressure-robust, which means, the velocity error is independent of the pressure and the irrotational body force. Error analysis is established to show the optimal rate of convergence. Numerical experiments are presented to validate the theoretical conclusions.
翻译:在本文中, 我们开发并分析一个新颖的数字方案, 用于使用微弱的Galerkin 方法, 稳定不压缩的 Navier- Stokes 方程式。 差异- 保存速度重建操作员用于动力方程式的离散化 。 我们的算法可以通过使用速度构造操作员实现压力- 气旋, 也就是说, 速度错误独立于压力和循环体力。 错误分析是为了显示最佳的趋同率而建立的。 数字实验是用来验证理论结论的。