Randomized iterative methods have attracted much attention in recent years because they can approximately solve large-scale linear systems of equations without accessing the entire coefficient matrix. In this paper, we propose two novel pseudoinverse-free randomized block iterative methods for solving consistent and inconsistent linear systems. Our methods require two user-defined random matrices: one for row sampling and the other for column sampling. The well-known doubly stochastic Gauss--Seidel, randomized Kaczmarz, randomized coordinate descent, and randomized extended Kaczmarz methods are special cases of our methods corresponding to specially selected random matrices. Because our methods allow for a much wider selection of these two random matrices, a number of new specific methods can be obtained. We prove the linear convergence (in the mean square sense) of our methods. Numerical experiments for linear systems with synthetic and real-world coefficient matrices demonstrate the efficiency of some special cases of our methods. We remark that due to the pseudoinverse-free nature our methods can be easily implemented for parallel computation to yield further computational gains.


翻译:近年来,随机迭代方法引起了人们的极大关注,因为这些方法可以在不使用整个系数矩阵的情况下,大致解决大型线性方程系统。在本文中,我们提出了两种新的伪反向无源随机区块迭代方法,以解决一致和不一致线性系统。我们的方法需要两种用户定义随机矩阵:一种是行样抽样,另一种是柱子抽样。众所周知的双重随机高斯-赛德尔、随机化卡兹马尔兹、随机化坐标下游和随机化扩展卡兹马尔兹方法是我们与特别选定的随机矩阵相对应的方法的特殊例子。由于我们的方法允许更广泛地选择这两种随机矩阵,因此可以取得一些新的具体方法。我们证明了我们方法的线性趋同(平均平方意义),用合成和真实世界系数矩阵对线性系统进行的数值实验显示了我们方法中某些特殊案例的效率。我们说,由于伪反向性的性质,我们的方法可以很容易地用于平行计算,从而获得进一步的计算收益。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月14日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2017年11月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年1月14日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2017年11月4日
Top
微信扫码咨询专知VIP会员