We propose high-order well-balanced finite-volume schemes for a broad class of hydrodynamic systems with attractive-repulsive interaction forces and linear and nonlinear damping. Our schemes are suitable for free energies containing convolutions of an interaction potential with the density, which are essential for applications such as the Keller-Segel model, more general Euler-Poisson systems, or dynamic-density functional theory. Our schemes are also equipped with a nonnegative-density reconstruction which allows for vacuum regions during the simulation. We provide several prototypical examples from relevant applications highlighting the benefit of our algorithms elucidate also some of our analytical results.
翻译:我们建议为具有有吸引力的修复性互动力量以及线性和非线性阻断作用的一大批流体动力系统制定高度平衡的量子计划,我们的计划适合于含有与密度相互作用潜力的无源能源,这种潜力与密度的相互作用是不可或缺的,例如Keller-Segel模型、更一般的Euler-Poisson系统或动态密度功能理论等应用。我们的计划还配备了非负向密度重建,允许模拟期间的真空区域。我们提供了一些相关应用的典型例子,突出显示了我们算法的好处,并阐明了我们的一些分析结果。