In this paper, we present and analyze a weak Galerkin finite element (WG) method for solving the symmetric hyperbolic systems. This method is highly flexible by allowing the use of discontinuous finite elements on element and its boundary independently of each other. By introducing special weak derivative, we construct a stable weak Galerkin scheme and derive the optimal $L_2$-error estimate of $O(h^{k+\frac{1}{2}})$-order for the discrete solution when the $k$-order polynomials are used for $k\geq 0$. As application, we discuss this WG method for solving the singularly perturbed convection-diffusion-reaction equation and derive an $\varepsilon$-uniform error estimate of order $k+1/2$. Numerical examples are provided to show the effectiveness of the proposed WG method.


翻译:在本文中,我们提出并分析一种解决对称双曲系统微弱的Galerkin定额元素(WG)方法。这种方法非常灵活,允许在元素及其边界上独立使用不连续的有限元素。我们通过引入特别弱的衍生物,构建了一个稳定的微弱Galerkin计划,并得出美元(h ⁇ k ⁇ k ⁇ frac{1 ⁇ 2 ⁇ 2 ⁇ )的离散溶液最佳估计值$L_2美元(美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/ 美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/多号/美元/美元/美元/美元/美元/美元/美元/美元/多号/美元/美元/多号/美元/美元/美元/美元/美元/多号/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/多/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/多号/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年1月11日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Top
微信扫码咨询专知VIP会员