In this paper, we present and analyze a weak Galerkin finite element (WG) method for solving the symmetric hyperbolic systems. This method is highly flexible by allowing the use of discontinuous finite elements on element and its boundary independently of each other. By introducing special weak derivative, we construct a stable weak Galerkin scheme and derive the optimal $L_2$-error estimate of $O(h^{k+\frac{1}{2}})$-order for the discrete solution when the $k$-order polynomials are used for $k\geq 0$. As application, we discuss this WG method for solving the singularly perturbed convection-diffusion-reaction equation and derive an $\varepsilon$-uniform error estimate of order $k+1/2$. Numerical examples are provided to show the effectiveness of the proposed WG method.
翻译:在本文中,我们提出并分析一种解决对称双曲系统微弱的Galerkin定额元素(WG)方法。这种方法非常灵活,允许在元素及其边界上独立使用不连续的有限元素。我们通过引入特别弱的衍生物,构建了一个稳定的微弱Galerkin计划,并得出美元(h ⁇ k ⁇ k ⁇ frac{1 ⁇ 2 ⁇ 2 ⁇ )的离散溶液最佳估计值$L_2美元(美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/ 美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/多号/美元/美元/美元/美元/美元/美元/美元/美元/多号/美元/美元/多号/美元/美元/美元/美元/美元/多号/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/多/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/多号/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元