We propose a novel approach to uniformity testing on the $d$-dimensional unit hypersphere $\mathcal{S}^{d-1}$ based on maximal projections. This approach gives a unifying view on the classical uniformity tests of Rayleigh and Bingham, and it links to measures of multivariate skewness and kurtosis. We derive the limiting distribution under the null hypothesis using limit theorems for Banach space valued stochastic processes and we present strategies to simulate the limiting processes by applying results on the theory of spherical harmonics. We examine the behavior under contiguous and fixed alternatives and show the consistency of the testing procedure for some classes of alternatives. For the first time in uniformity testing on the sphere, we derive local Bahadur efficiency statements. We evaluate the theoretical findings and empirical powers of the procedures in a broad competitive Monte Carlo simulation study and, finally, apply the new tests to a data set on midpoints of large craters on the moon.
翻译:我们提出了一个基于最大预测的对美元元元超光速单位超光速值(mathcal{S ⁇ d-1})美元进行统一测试的新办法。这个办法对Raylei和Bingham的经典统一测试提供了统一的观点,并将它与多种变异偏差和神经中毒的测量方法联系起来。我们利用对Banach空间的限值理论来得出无效假设下的限制分布,我们提出了通过应用球体合力理论的结果来模拟限制过程的战略。我们研究了毗连和固定替代方法下的行为,并展示了某些类别替代品的测试程序的一致性。我们第一次在对球体进行统一测试时,我们从当地生成了巴哈杜尔效率说明。我们在广泛的竞争性蒙特卡洛模拟研究中评估了程序的理论结果和经验能力,最后,我们对月球上大型弹坑的中点数据集进行了新的测试。