We consider the noir classification problem by exploring noir attributes and what films are likely to be regarded as noirish from the perspective of a wide Internet audience. We use a dataset consisting of more than 30,000 films with relevant tags added by users of MovieLens, a web-based recommendation system. Based on this data, we develop a statistical model to identify films with noir characteristics using these free-form tags. After retrieving information for describing films from tags, we implement a one-class nearest neighbors algorithm to recognize noirish films by learning from IMDb-labeled noirs. Our analysis evidences film noirs' close relationship with German Expressionism, French Poetic Realism, British thrillers, and American pre-code crime pictures, revealing the similarities and differences between neo noirs after 1960 and noirs in the classic period.
翻译:我们从广大的互联网受众的角度来考虑诺尔分类问题,探索诺尔属性以及哪些电影可能被视为诺尔特。我们使用一个由30,000多部电影组成的数据集,由MovieLens用户添加的相关标签组成,这是一个基于网络的建议系统。根据这些数据,我们开发了一种统计模型,用这些自由形式标签来识别没有特色的电影。在从标签中检索描述电影的信息之后,我们采用了一种一流的近邻算法,通过学习IMDb标签的名牌名牌来识别诺尔特电影。我们的分析证据表明了电影诺尔斯与德国表达主义、法国诗意现实主义、英国惊险家和美国预代码犯罪图片的密切关系,揭示了1960年后新诺尔与经典时期新诺尔之间的相似和差异。