Leveraging powerful deep learning techniques, the end-to-end (E2E) learning of communication system is able to outperform the classical communication system. Unfortunately, this communication system cannot be trained by deep learning without known channel. To deal with this problem, a generative adversarial network (GAN) based training scheme has been recently proposed to imitate the real channel. However, the gradient vanishing and overfitting problems of GAN will result in the serious performance degradation of E2E learning of communication system. To mitigate these two problems, we propose a residual aided GAN (RA-GAN) based training scheme in this paper. Particularly, inspired by the idea of residual learning, we propose a residual generator to mitigate the gradient vanishing problem by realizing a more robust gradient backpropagation. Moreover, to cope with the overfitting problem, we reconstruct the loss function for training by adding a regularizer, which limits the representation ability of RA-GAN. Simulation results show that the trained residual generator has better generation performance than the conventional generator, and the proposed RA-GAN based training scheme can achieve the near-optimal block error rate (BLER) performance with a negligible computational complexity increase in both the theoretical channel model and the ray-tracing based channel dataset.


翻译:利用强大的深层学习技术,终端到终端(E2E)的通信系统学习能够超越古老的通信系统。不幸的是,这一通信系统无法在没有已知渠道的情况下通过深层学习来培训。为了解决这个问题,最近提议了一个基于基因对抗网络(GAN)的培训计划来模仿真正的渠道。然而,GAN的梯度消失和过度适应问题将导致E2E学习通信系统的功能严重退化。为了缓解这两个问题,我们提议在本文中采用一个残余的辅助GAN(RA-GAN)的培训计划。特别是,根据残余学习的理念,我们提议一个残余的发电机,通过实现更强的梯度反向调整来缓解梯度消散的问题。此外,为了应对这个过于合适的问题,我们通过增加一个常规化剂来重建培训损失功能,这限制了RA-GAN的演示能力。模拟结果表明,经过培训的残余发电机的生成性能比常规发电机要好,而基于RA-GAN的拟议培训计划可以在基于模型的深度差差率率上实现模型化区块错误率(GLER),同时进行一个可忽略式的轨道计算。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
113+阅读 · 2019年12月13日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
207+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员