The acceleration of CNNs has gained increasing atten-tion since their success in computer vision. With the heterogeneous functional layers that cannot be pro-cessed by the accelerators proposed for convolution layers only, modern end-to-end CNN acceleration so-lutions either transform the diverse computation into matrix/vector arithmetic, which loses data reuse op-portunities in convolution, or introduce dedicated functional unit to each kind of layer, which results in underutilization and high update expense. To enhance the whole-life cost efficiency, we need an acceleration solution that is efficient in processing CNN layers and has the generality to apply to all kinds of existing and emerging layers. To this end, we pro-pose GCONV Chain, a method to convert the entire CNN computation into a chain of standard general convolutions (GCONV) that can be efficiently pro-cessed by the existing CNN accelerators. This paper comprehensively analyzes the GCONV Chain model and proposes a full-stack implementation to support GCONV Chain. On one hand, the results on seven var-ious CNNs demonstrate that GCONV Chain improves the performance and energy efficiency of existing CNN accelerators by an average of 3.4x and 3.2x re-spectively. On the other hand, we show that GCONV Chain provides low whole-life costs for CNN accelera-tion, including both developer efforts and total cost of ownership for the users.


翻译:CNN的加速率自计算机愿景成功以来不断提高。由于只为进化层提议的加速器无法推动不同功能层,现代端对端CNN加速度的解决方案要么将多种计算转换成矩阵/矢量计算,从而在进化中丧失数据再利用机会,要么向每种层引入专门的功能单位,从而导致利用不足和高更新费用。为了提高整个寿命成本效率,我们需要一种高效处理CNN层的加速解决方案,并具有适用于所有现有和新兴层的通用性。为此,我们将GCONV链作为将CNN整个计算转换成标准总体演算链(GCONSV)的一种方法,这一方法可以有效地被现有的CNNAA加速器加速器取代。本文全面分析GCONV链模式,并提议全面实施支持GCONV链。一方面,7个具有反向型的CNNCNCN的系统总成本和CONCAR(包括GCNCAR)的当前平均成本和成本效率。

0
下载
关闭预览

相关内容

在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员