Epidemiologic screening programs often make use of tests with small, but non-zero probabilities of misdiagnosis. In this article, we assume the target population is finite with a fixed number of true cases, and that we apply an imperfect test with known sensitivity and specificity to a sample of individuals from the population. In this setting, we propose an enhanced inferential approach for use in conjunction with sampling-based bias-corrected prevalence estimation. While ignoring the finite nature of the population can yield markedly conservative estimates, direct application of a standard finite population correction (FPC) conversely leads to underestimation of variance. We uncover a way to leverage the typical FPC indirectly toward valid statistical inference. In particular, we derive a readily estimable extra variance component induced by misclassification in this specific but arguably common diagnostic testing scenario. Our approach yields a standard error estimate that properly captures the sampling variability of the usual bias-corrected maximum likelihood estimator of disease prevalence. Finally, we develop an adapted Bayesian credible interval for the true prevalence that offers improved frequentist properties (i.e., coverage and width) relative to a Wald-type confidence interval. We report the simulation results to demonstrate the enhanced performance of the proposed inferential methods.
翻译:流行病学筛查方案经常使用小的、非零的误诊断概率测试。 在本条中,我们假设目标人口有限,有固定数量的真实案例,我们假设目标人口有限,我们对人口抽样采用已知敏感度和特殊性不完善的测试。在这种背景下,我们提出一种强化的推断方法,结合基于抽样的、有偏差纠正的流行率估计使用。虽然忽视人口的有限性质可以得出明显保守的估计,但直接采用标准的有限人口校正(PFC)反过来导致低估差异。我们发现一种方法,可以间接利用典型的FPC进行有效的统计推断。特别是,我们从这一具体但有争议的共同诊断测试假设中得出了一个很容易估计的外差部分。我们的方法得出一个标准误差估计,适当地捕捉了通常有偏差纠正的最大可能性估计疾病流行率的抽样变异性。最后,我们为真正流行性能得到改善(i.e.范围、宽度),我们找到了一种可以间接利用FPC的方法,从而得出有效的统计推算结果。特别是,我们从这一具体但有争议的共同诊断性测测测测的模型中得出了一个容易估计结果。我们提出的测算得出了一种比较的间隔。我们的方法得出了一种比较的成绩。