Drawing images of characters at desired poses is an essential but laborious task in anime production. In this paper, we present the Collaborative Neural Rendering~(CoNR) method to create new images from a few arbitrarily posed reference images available in character sheets. In general, the high diversity of body shapes of anime characters defies the employment of universal body models for real-world humans, like SMPL. To overcome this difficulty, CoNR uses a compact and easy-to-obtain landmark encoding to avoid creating a unified UV mapping in the pipeline. In addition, CoNR's performance can be significantly increased when having multiple reference images by using feature space cross-view dense correspondence and warping in a specially designed neural network construct. Moreover, we collect a character sheet dataset containing over 700,000 hand-drawn and synthesized images of diverse poses to facilitate research in this area.
翻译:以想要的外形绘制字符图像是动画制作中一项必要但艰巨的任务。 在本文中,我们展示了“合作神经成像~(CONR)”方法,从一些任意提供的性格表单中的参考图像中生成新的图像。一般而言,动画人物的身体形状差异很大,无法为现实世界人类(如SMPL)使用通用人体模型。为了克服这一困难,CNR使用一个紧凑和容易看到的地标编码,以避免在管道中创建统一的紫外线映像。此外,如果在专门设计的神经网络构造中利用地貌空间交叉浏览密集的通信和扭曲来生成多个参考图像,CONR的性能可以显著提高。此外,我们收集了一个包含70多万个手绘和合成的多种外形图像的字符表数据集,以促进这一领域的研究。