Solar forecasting from ground-based sky images using deep learning models has shown great promise in reducing the uncertainty in solar power generation. One of the biggest challenges for training deep learning models is the availability of labeled datasets. With more and more sky image datasets open sourced in recent years, the development of accurate and reliable solar forecasting methods has seen a huge growth in potential. In this study, we explore three different training strategies for deep-learning-based solar forecasting models by leveraging three heterogeneous datasets collected around the world with drastically different climate patterns. Specifically, we compare the performance of models trained individually based on local datasets (local models) and models trained jointly based on the fusion of multiple datasets from different locations (global models), and we further examine the knowledge transfer from pre-trained solar forecasting models to a new dataset of interest (transfer learning models). The results suggest that the local models work well when deployed locally, but significant errors are observed for the scale of the prediction when applied offsite. The global model can adapt well to individual locations, while the possible increase in training efforts need to be taken into account. Pre-training models on a large and diversified source dataset and transferring to a local target dataset generally achieves superior performance over the other two training strategies. Transfer learning brings the most benefits when there are limited local data. With 80% less training data, it can achieve 1% improvement over the local baseline model trained using the entire dataset. Therefore, we call on the efforts from the solar forecasting community to contribute to a global dataset containing a massive amount of imagery and displaying diversified samples with a range of sky conditions.


翻译:利用深层学习模型对地基天空图像的太阳预报显示,在减少太阳能发电的不确定性方面大有希望。培训深层学习模型的最大挑战之一是提供标签化数据集。近年来,随着越来越多的天空图像数据集的公开来源,准确和可靠的太阳预报方法的开发潜力有了巨大的增长。在这项研究中,我们探索了三个不同的培训战略,即利用世界各地收集的气候模式差异很大的三套不同数据集,为深层学习型太阳预报模型提供不同的培训战略。具体地说,我们比较了根据当地数据集(当地模型)和根据不同地点(全球模型)多个数据集合并而共同培训的模型的绩效。我们进一步审查了从事先培训过的太阳预测模型向新的感兴趣数据集(转移学习模型)的知识转移。结果显示,当地模型在本地部署时效果良好,但观测到的信号有重大错误。全球模型可以适应各个不同的地点,同时需要将培训条件的可能增加纳入考虑。在大规模和多样化的天平面模型中,在大规模和多样化的天平面上,在大规模传输数据时,通过经过培训的模型,在大规模和最多样化的源值数据上,我们进行了有限的数据学习,可以实现更高的数据。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
17+阅读 · 2020年11月15日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2019年3月14日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员