We present a deep learning method for accurately localizing the center of a single corneal reflection (CR) in an eye image. Unlike previous approaches, we use a convolutional neural network (CNN) that was trained solely using simulated data. Using only simulated data has the benefit of completely sidestepping the time-consuming process of manual annotation that is required for supervised training on real eye images. To systematically evaluate the accuracy of our method, we first tested it on images with simulated CRs placed on different backgrounds and embedded in varying levels of noise. Second, we tested the method on high-quality videos captured from real eyes. Our method outperformed state-of-the-art algorithmic methods on real eye images with a 35% reduction in terms of spatial precision, and performed on par with state-of-the-art on simulated images in terms of spatial accuracy.We conclude that our method provides a precise method for CR center localization and provides a solution to the data availability problem which is one of the important common roadblocks in the development of deep learning models for gaze estimation. Due to the superior CR center localization and ease of application, our method has the potential to improve the accuracy and precision of CR-based eye trackers
翻译:我们提出了一种深度学习方法,用于在眼睛图像中精确定位单个角膜反射(CR)的中心。与之前的方法不同,我们使用了仅使用模拟数据训练的卷积神经网络(CNN)。仅使用模拟数据的好处是完全避开了手工注释的耗时过程,这对于在真实的眼睛图像上进行监督训练是必须的。为了系统地评估我们方法的准确性,我们首先对放置在不同背景和嵌入不同噪声水平的图像上的模拟CR进行了测试。其次,我们在从真实眼睛捕获的高品质视频上测试了该方法。我们的方法在真实眼睛图像上表现比最先进的算法方法提高了35%的精度,而在模拟图像上则在空间精度方面与最先进的技术保持相同。我们得出结论,我们的方法提供了角膜反射中心定位的精确方法,并提供了解决数据可用性问题的解决方案,这是发展基于眼动估计的深度学习模型的重要共同障碍之一。由于具有更好的CR中心定位和应用便捷性,我们的方法有潜力提高基于CR的眼动跟踪器的准确性和精度。