We present a family of discretizations for the Variable Eddington Factor (VEF) equations that have high-order accuracy on curved meshes and efficient preconditioned iterative solvers. The VEF discretizations are combined with a high-order Discontinuous Galerkin transport discretization to form an effective high-order, linear transport method. The VEF discretizations are derived by extending the unified analysis of Discontinuous Galerkin methods for elliptic problems to the VEF equations. This framework is used to define analogs of the interior penalty, second method of Bassi and Rebay, minimal dissipation local Discontinuous Galerkin, and continuous finite element methods. The analysis of subspace correction preconditioners, which use a continuous operator to iteratively precondition the discontinuous discretization, is extended to the case of the non-symmetric VEF system. Numerical results demonstrate that the VEF discretizations have arbitrary-order accuracy on curved meshes, preserve the thick diffusion limit, and are effective on a proxy problem from thermal radiative transfer in both outer transport iterations and inner preconditioned linear solver iterations. In addition, a parallel weak scaling study of the interior penalty VEF discretization demonstrates the scalability of the method out to 1152 processors.
翻译:我们为可变埃丁顿系数(VEF)方程式提出了一组离散式,在弯曲的中间线和高效的有先决条件的迭代求解器上具有高度精度。VEF离散式与高端不连续的Galerkin运输离散式相结合,形成有效的高序线式线性运输方法。VEF离散式是通过将对不连续的Galerkin方法进行统一分析的结果推导成VEF方程式。这个框架用来界定内部刑罚的类似物、巴西和Rebay的第二种方法、局部最小消散性Galerkin和连续的有限元素方法。对次空间修正前置器的分析,利用连续操作者交互性地设定不连续的离散性高序、线性运输的分解方法,扩展至非对不连续的VEF系统的情况。数字结果显示,VEF离散的离解式分解式方法在弯曲的中具有任意性顺序精确性精确性,保留厚的传播限制,并有效处理替代问题,在外热热感感感感应转移的外导性迁移的局部消融和内伸缩性惯性惯性试验中进行。