Electronic Health Records (EHR) are generated from clinical routine care recording valuable information of broad patient populations, which provide plentiful opportunities for improving patient management and intervention strategies in clinical practice. To exploit the enormous potential of EHR data, a popular EHR data analysis paradigm in machine learning is EHR representation learning, which first leverages the individual patient's EHR data to learn informative representations by a backbone, and supports diverse health-care downstream tasks grounded on the representations. Unfortunately, such a paradigm fails to access the in-depth analysis of patients' relevance, which is generally known as cohort studies in clinical practice. Specifically, patients in the same cohort tend to share similar characteristics, implying their resemblance in medical conditions such as symptoms or diseases. In this paper, we propose a universal COhort Representation lEarning (CORE) framework to augment EHR utilization by leveraging the fine-grained cohort information among patients. In particular, CORE first develops an explicit patient modeling task based on the prior knowledge of patients' diagnosis codes, which measures the latent relevance among patients to adaptively divide the cohorts for each patient. Based on the constructed cohorts, CORE recodes the pre-extracted EHR data representation from intra- and inter-cohort perspectives, yielding augmented EHR data representation learning. CORE is readily applicable to diverse backbone models, serving as a universal plug-in framework to infuse cohort information into healthcare methods for boosted performance. We conduct an extensive experimental evaluation on two real-world datasets, and the experimental results demonstrate the effectiveness and generalizability of CORE.
翻译:电子病历(EHR)是从临床例行护理中产生的,记录了广泛的患者群体的有价值信息,为改进临床实践中的患者管理和干预策略提供了丰富的机会。为了利用EHR数据的巨大潜力,机器学习中流行的EHR数据分析范式是EHR表示学习,该范式首先利用单个患者的EHR数据通过主干学习有用的表示,并支持以表示为基础的多样化医疗下游任务。不幸的是,这种范式无法访问患者相关性的深入分析,在临床实践中通常称为队列研究。具体而言,同一队列中的患者倾向于共享类似的特征,暗示他们在医学情况中,如症状或疾病方面的相似性。在本文中,我们提出了一种通用的COhort表示学习(CORE)框架,以利用患者之间的细粒度队列信息来增强EHR的利用率。特别是,CORE首先基于患者的诊断编码的先验知识开发了一个明确的患者建模任务,它度量患者之间的潜在相关性以自适应地划分每个患者的队列。基于构建的队列,CORE从队内和队间的角度重新编码预提取的EHR数据表示,从而产生增强的EHR数据表示学习。CORE可直接应用于各种主干模型,作为通用的插件框架,将队列信息注入医学方法以提高性能。我们对两个实际数据集进行了广泛的实验评估,实验结果证明了CORE的有效性和可推广性。