Numerical evaluation of statistics plays an important role in data assimilation and filtering. When one focuses on stochastic differential equations, Monte Carlo simulations or moment closure approximations are available to evaluate the statistics. The other approach is to solve the corresponding backward Kolmogorov equation. However, a basis expansion for the backward Kolmogorov equation leads to infinite systems of differential equations, and conventional numerical methods such as the Crank-Nicolson method are not available directly. Here, a local approximation of the Crank-Nicolson method is proposed. The local approximation transforms the implicit time integration algorithm into an explicit one, which enables us to employ combinatorics for the proposed algorithm. The proposed algorithm shows a second-order convergence. Furthermore, the convergence property naturally leads to extrapolation methods; they work well to calculate a more accurate value with small steps. The proposed method is demonstrated with the Ornstein-Uhlenbeck process and the noisy van der Pol system.
翻译:统计数字评估在数据同化和过滤中起着重要作用。 当关注随机差分方程式时, 蒙特卡洛模拟或瞬间关闭近似值可以用来评估统计数据。 另一种方法是解决相应的后向后科尔莫戈罗夫方程式。 但是, 后向的科尔莫戈罗夫方程式的基础扩展导致差异方程式的无限系统, 并且没有直接提供Crank- Nicolson 方法等常规数字方法。 在此, 提议了Crank- Nicolson 方法的本地近似值。 本地近似法将隐含的时间整合算法转换为明确的算法, 从而使我们能够为拟议的算法使用组合算法。 提议的算法显示二阶趋同法。 此外, 属性自然导致外推法的趋同法; 它们很好地用小步法计算出一个更准确的值。 拟议的方法通过Ornstein- Uhlenbeck 进程和 van der Pol 系统演示。