We present hierarchical policy blending as optimal transport (HiPBOT). HiPBOT hierarchically adjusts the weights of low-level reactive expert policies of different agents by adding a look-ahead planning layer on the parameter space. The high-level planner renders policy blending as unbalanced optimal transport consolidating the scaling of the underlying Riemannian motion policies. As a result, HiPBOT effectively decides the priorities between expert policies and agents, ensuring the task's success and guaranteeing safety. Experimental results in several application scenarios, from low-dimensional navigation to high-dimensional whole-body control, show the efficacy and efficiency of HiPBOT. Our method outperforms state-of-the-art baselines -- either adopting probabilistic inference or defining a tree structure of experts -- paving the way for new applications of optimal transport to robot control. More material at https://sites.google.com/view/hipobot
翻译:我们提出了层次策略混合作为最优传输(HiPBOT)。 HiPBOT通过在参数空间上添加前瞻规划层逐层调整不同代理的低级反应专家策略的权重。高级别计划者将策略混合呈现为不平衡优化传输,巩固了底层Riemann运动策略的缩放。结果,HiPBOT有效地决定专家策略和代理之间的优先级,确保任务成功并保证安全。在几个应用场景中的实验结果,从低维导航到高维全身控制,显示了HiPBOT的功效和效率。我们的方法优于采用概率推断或定义专家树结构的现有基线,为机器人控制开辟了一条新的最优传输应用之路。更多材料可在https://sites.google.com/view/hipobot上找到。