In this work, we introduce an optoelectronic spiking artificial neuron capable of operating at ultrafast rates ($\approx$ 100 ps/optical spike) and with low energy consumption ($<$ pJ/spike). The proposed system combines an excitable resonant tunnelling diode (RTD) element exhibiting negative differential conductance, coupled to a nanoscale light source (forming a master node) or a photodetector (forming a receiver node). We study numerically the spiking dynamical responses and information propagation functionality of an interconnected master-receiver RTD node system. Using the key functionality of pulse thresholding and integration, we utilize a single node to classify sequential pulse patterns and perform convolutional functionality for image feature (edge) recognition. We also demonstrate an optically-interconnected spiking neural network model for processing of spatiotemporal data at over 10 Gbps with high inference accuracy. Finally, we demonstrate an off-chip supervised learning approach utilizing spike-timing dependent plasticity for the RTD-enabled photonic spiking neural network. These results demonstrate the potential and viability of RTD spiking nodes for low footprint, low energy, high-speed optoelectronic realization of neuromorphic hardware.
翻译:在这项工作中,我们引入了能够以超快速率运行($approx$100 ps/光学峰值)和低能量消耗(<pJ/spike$ pJ/spike美元)的人工神经元光电子溢出。拟议系统将一个显示负偏差的振动共振隧道二极管(RTD)元素与纳米光源(制成主节点)或光探测仪(制成接收器节点)相结合。我们从数字角度研究一个相互关联的总接收器 RTD节点系统的动态响应和信息传播功能。我们利用脉冲阈值和集的关键功能,利用一个单一节点来分类连续脉冲模式,并进行图像特征识别的进化功能。我们还展示了10Gbps以上处理高精确度电磁场数据的光相连接的神经神经网络模型模型。我们展示了一种利用RTD可控低电磁性、低神经系统软化软化软化软化软化软体网络的顶部依赖性可塑性软性模型的外监管学习方法。