To harness the full potential of beyond 5G (B5G) communication systems, zero-touch network slicing (NS) is viewed as a promising fully-automated management and orchestration (MANO) system. This paper proposes a novel knowledge plane (KP)-based MANO framework that accommodates and exploits recent NS technologies and is termed KB5G. Specifically, we deliberate on algorithmic innovation and artificial intelligence (AI) in KB5G. We invoke a continuous model-free deep reinforcement learning (DRL) method to minimize energy consumption and virtual network function (VNF) instantiation cost. We present a novel Actor-Critic-based NS approach to stabilize learning called, twin-delayed double-Q soft Actor-Critic (TDSAC) method. The TDSAC enables central unit (CU) to learn continuously to accumulate the knowledge learned in the past to minimize future NS costs. Finally, we present numerical results to showcase the gain of the adopted approach and verify the performance in terms of energy consumption, CPU utilization, and time efficiency.
翻译:为了充分利用5G(B5G)通信系统以外的充分潜力,零触摸网络切除(NS)被视为一个充满希望的全自动管理和管弦系统,本文件提出一个新的知识平面(KP)基于MANO的框架,它容纳和利用最近的NS技术,称为KB5G。具体地说,我们在KB5G中讨论了算法创新和人工智能(AI)。我们采用连续无模型的深度强化学习(DRL)方法,以最大限度地减少能源消耗和虚拟网络功能的即时成本。我们提出了一个新的基于Acor-Critic的NS方法,以稳定学习,称为双叠双Q软动作-Crict(TDSAC)方法。TDSAC使中央单位(CU)能够不断学习积累过去学到的知识,以尽量减少未来的NS成本。最后,我们提出数字结果,以展示所采用的方法的收益,并核查能源消耗、CPU利用和时间效率方面的绩效。