Kleene algebra with tests, KAT, provides a simple two-sorted algebraic framework for verifying properties of propositional while programs. Kleene algebra with domain, KAD, is a one-sorted alternative to KAT. The equational theory of KAT embeds into KAD, but KAD lacks some natural properties of KAT. For instance, not each Kleene algebra expands to a KAD, and the subalgebra of tests in each KAD is forced to be the maximal Boolean subalgebra of the negative cone. In this paper we propose a generalization of KAD that avoids these features while still embedding the equational theory of KAT. We show that several natural properties of the domain operator of KAD can be added to the generalized framework without affecting the results. We consider a variant of the framework where test complementation is defined using a residual of the Kleene algebra multiplication.
翻译:Kleene 代数与测试为 KAT 提供了一个简单的两组代数框架, 用于验证 pubalal 程序时的属性。 Kleene 代数框架与域名 KAD 是 KAT 的单数替代。 KAT 嵌入 KAD 的等式理论, 但 KAD 缺乏某些自然特性 。 例如, 不是每个 Kleene 代数扩展为 KAD, 每个 KAD 中的测试的子代数框架都被迫是负式锥体的最大布尔亚代数 。 在本文中, 我们建议对 KAD 进行概括化, 避免这些特性, 同时仍然嵌入 KAT 的等式理论 。 我们显示, KAD 域操作员的一些自然特性可以添加到通用框架中, 而不影响结果 。 我们考虑一个框架的变体, 即使用 Kleene 代数乘法的剩余值来定义测试补充 。