A diffusion model learns to predict a vector field of gradients. We propose to apply chain rule on the learned gradients, and back-propagate the score of a diffusion model through the Jacobian of a differentiable renderer, which we instantiate to be a voxel radiance field. This setup aggregates 2D scores at multiple camera viewpoints into a 3D score, and repurposes a pretrained 2D model for 3D data generation. We identify a technical challenge of distribution mismatch that arises in this application, and propose a novel estimation mechanism to resolve it. We run our algorithm on several off-the-shelf diffusion image generative models, including the recently released Stable Diffusion trained on the large-scale LAION dataset.
翻译:扩散模型会学会预测梯度的矢量场。 我们建议对学习过的梯度应用链条规则, 并通过一个不同的可变成形体的杰柯比亚人, 反向推进一个扩散模型的分数, 我们即刻将它变成一个 voxel 弧度场。 这个设置集成在多摄像头视图中将 2D 分加到 3D 分中, 并重新为 3D 数据生成重新配置一个经过预先训练的 2D 模型。 我们找出了这个应用程序中出现的分配不匹配的技术挑战, 并提出了解决它的新估算机制 。 我们用几种现成的散变异图像基因模型, 包括最近推出的大型 LAION 数据集培训的 Stable Diflution 。