We introduce 3DShape2VecSet, a novel shape representation for neural fields designed for generative diffusion models. Our shape representation can encode 3D shapes given as surface models or point clouds, and represents them as neural fields. The concept of neural fields has previously been combined with a global latent vector, a regular grid of latent vectors, or an irregular grid of latent vectors. Our new representation encodes neural fields on top of a set of vectors. We draw from multiple concepts, such as the radial basis function representation and the cross attention and self-attention function, to design a learnable representation that is especially suitable for processing with transformers. Our results show improved performance in 3D shape encoding and 3D shape generative modeling tasks. We demonstrate a wide variety of generative applications: unconditioned generation, category-conditioned generation, text-conditioned generation, point-cloud completion, and image-conditioned generation.
翻译:我们引入了 3DShape2VecSet, 这是为基因扩散模型设计的神经场的新形状表示。 我们的形状表示可以编码作为表面模型或点云的3D形状, 并把它们作为神经场。 神经场的概念以前已经与全球潜向矢量、 潜向矢量的常规网格或潜向矢量的非正规网格相结合。 我们在一组矢量之上的新显示将神经场编码。 我们从多种概念中, 如辐射基函数表示以及交叉关注和自我关注功能中, 设计一种特别适合变压器处理的可学习的表示。 我们的结果显示3D 形状编码和 3D 形状的基因模型任务表现得到改善。 我们展示了多种基因化应用: 无条件生成、 类别化生成、 文本有条件生成、 点谱完成和 图像生成。