From learning assistance to companionship, social robots promise to enhance many aspects of daily life. However, social robots have not seen widespread adoption, in part because (1) they do not adapt their behavior to new users, and (2) they do not provide sufficient privacy protections. Centralized learning, whereby robots develop skills by gathering data on a server, contributes to these limitations by preventing online learning of new experiences and requiring storage of privacy-sensitive data. In this work, we propose a decentralized learning alternative that improves the privacy and personalization of social robots. We combine two machine learning approaches, Federated Learning and Continual Learning, to capture interaction dynamics distributed physically across robots and temporally across repeated robot encounters. We define a set of criteria that should be balanced in decentralized robot learning scenarios. We also develop a new algorithm -- Elastic Transfer -- that leverages importance-based regularization to preserve relevant parameters across robots and interactions with multiple humans. We show that decentralized learning is a viable alternative to centralized learning in a proof-of-concept Socially-Aware Navigation domain, and demonstrate how Elastic Transfer improves several of the proposed criteria.
翻译:社会机器人从学习援助到伴侣关系,他们承诺加强日常生活的许多方面。然而,社会机器人没有看到被广泛采用,部分原因是:(1) 他们的行为没有适应新的用户,(2) 他们没有提供足够的隐私保护。 集中学习,即机器人通过在服务器上收集数据来发展技能,从而防止在线学习新经验,并要求储存隐私敏感数据,从而推动这些限制。 在这项工作中,我们提出一个分散学习的替代方法,改善社会机器人的隐私和个人化。我们结合两种机器学习方法,即联邦学习和持续学习,以捕捉机器人之间实际分布的交互动态,并在机器人反复遇到的时间间隔中捕捉这些动态。我们界定了在分散的机器人学习情景中应当平衡的一套标准。我们还开发了一种新的算法 -- -- 超自然转移法 -- -- 利用基于重要性的正规化来维护机器人之间的相关参数以及与多个人类的互动。我们表明分散学习是证据、社会-软件导航域中集中学习的可行替代方法,并展示Elactical 转移如何改善若干拟议标准。