Connection matrices are a generalization of Morse boundary operators from the classical Morse theory for gradient vector fields. Developing an efficient computational framework for connection matrices is particularly important in the context of a rapidly growing data science that requires new mathematical tools for discrete data. Toward this goal, the classical theory for connection matrices has been adapted to combinatorial frameworks that facilitate computation. We develop an efficient persistence-like algorithm to compute a connection matrix from a given combinatorial (multi) vector field on a simplicial complex. This algorithm requires a single-pass, improving upon a known algorithm that runs an implicit recursion executing two-passes at each level. Overall, the new algorithm is more simple, direct, and efficient than the state-of-the-art. Because of the algorithm's similarity to the persistence algorithm, one may take advantage of various software optimizations from topological data analysis.
翻译:连接矩阵是典型摩尔斯理论的摩尔斯边界操作员对梯度矢量字段的概括。 在快速增长的数据科学中,开发一个高效的连接矩阵计算框架尤其重要,这种科学要求为离散数据提供新的数学工具。为此,连接矩阵的经典理论已经适应了便于计算的各种组合框架。我们开发了一个高效的持久性类算法,从一个简化的复合体上从一个特定的组合(多矢量)矢量字段中计算一个连接矩阵。这种算法要求有一个单行法,改进一个已知的算法,它运行一种隐含的递回流,在每个级别上执行双行。总体而言,新的算法比最新技术更加简单、直接、高效。由于算法与持久性算法相似,人们可以利用从地形数据分析中得出的各种软件优化。</s>