Graph convolutional networks (GCNs) are powerful tools for graph-structured data. However, they have been recently shown to be vulnerable to topological attacks. To enhance adversarial robustness, we go beyond spectral graph theory to robust graph theory. By challenging the classical graph Laplacian, we propose a new convolution operator that is provably robust in the spectral domain and is incorporated in the GCN architecture to improve expressivity and interpretability. By extending the original graph to a sequence of graphs, we also propose a robust training paradigm that encourages transferability across graphs that span a range of spatial and spectral characteristics. The proposed approaches are demonstrated in extensive experiments to simultaneously improve performance in both benign and adversarial situations.


翻译:图形革命网络(GCN)是图表结构化数据的强大工具。 但是,它们最近被证明很容易受到地形攻击。为了提高对抗性强力,我们从光谱图理论到强力图形理论。通过挑战古典图Laplacian,我们提议一个新的图组运营商,在光谱领域具有可辨称的强力,并被纳入GCN结构,以提高表达性和可解释性。通过将原始图组扩展为一系列图表,我们还提议了一个强有力的培训模式,鼓励跨越空间和光谱特征的图组的可转移性。提议的方法体现在广泛的实验中,同时改善良性和对抗性以及对抗性情况下的性能。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
3+阅读 · 2020年4月29日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
相关论文
Top
微信扫码咨询专知VIP会员