Consider the problem of nonparametric estimation of an unknown $\beta$-H\"older smooth density $p_{XY}$ at a given point, where $X$ and $Y$ are both $d$ dimensional. An infinite sequence of i.i.d.\ samples $(X_i,Y_i)$ are generated according to this distribution, and Alice and Bob observe $(X_i)$ and $(Y_i)$, respectively. They are allowed to exchange $k$ bits either in oneway or interactively in order for Bob to estimate the unknown density. For $\beta\in(0,2]$, we show that the minimax mean square risk is order $\left(\frac{k}{\log k} \right)^{-\frac{2\beta}{d+2\beta}}$ for one-way protocols and $k^{-\frac{2\beta}{d+2\beta}}$ for interactive protocols. The logarithmic improvement is nonexistent in the parametric counterparts, and therefore can be regarded as a consequence of nonparametric nature of the problem. Moreover, a few rounds of interactions achieve the interactive minimax rate: we show that the number of rounds can grow as slowly as the super-logarithm (i.e., inverse tetration) of $k$.
翻译:(x_i, Y_i) 的无限序列。 依此分布生成了 i. d.\ 样本 $( X_i, Y_i) 的序列, Alice 和 Bob 分别为单程协议和 $( X_i) 美元和$( Y_i) 美元, 允许单程或互动方式交换美元比特, 以便 Bob 估算未知密度。 对于 $( 0. 2 美元) 和$( Y_ i) 的值, 我们显示, 微型正方形风险为 $( fleft) (\ frac{ knlog k}\right) 。 i. d\\\\\\ beta+2\ beta $( 美元) 。 允许它们以单程或交互方式交换 美元 。 以便 Bob 来估算未知密度。 对于 $( ) $( betta) eta\\ +2\\\\\\\\ beta \ k $( ) $( lake) ) $( lax) commal) comb) 。 在几对等对等对等对等对等对等对等器中不存在不存在,, 因此, 因此, 我们可被视为会得出一个不测的交互周期的反周期。 。