Over the last few decades, various methods have been proposed for estimating prediction intervals in regression settings, including Bayesian methods, ensemble methods, direct interval estimation methods and conformal prediction methods. An important issue is the calibration of these methods: the generated prediction intervals should have a predefined coverage level, without being overly conservative. In this work, we review the above four classes of methods from a conceptual and experimental point of view. Results on benchmark data sets from various domains highlight large fluctuations in performance from one data set to another. These observations can be attributed to the violation of certain assumptions that are inherent to some classes of methods. We illustrate how conformal prediction can be used as a general calibration procedure for methods that deliver poor results without a calibration step.


翻译:在过去几十年里,为估计回归环境中的预测间隔提出了各种方法,包括贝耶斯方法、混合方法、直接间隔估计方法和一致预测方法。一个重要问题是这些方法的校准:产生的预测间隔应该有一个预先界定的覆盖范围,而不应过于保守。在这项工作中,我们从概念和实验的角度来审查上述四类方法。不同领域基准数据集的结果显示,从一组数据到另一组数据,性能波动很大。这些观察可归因于违反某些类别方法所固有的某些假设。我们说明,对于在没有校准步骤的情况下产生不良结果的方法,如何将一致预测用作一般校准程序。

0
下载
关闭预览

相关内容

专知会员服务
94+阅读 · 2021年8月28日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
专知会员服务
15+阅读 · 2021年5月21日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员