Bagging is a useful method for large-scale statistical analysis, especially when the computing resources are very limited. We study here the asymptotic properties of bagging estimators for $M$-estimation problems but with massive datasets. We theoretically prove that the resulting estimator is consistent and asymptotically normal under appropriate conditions. The results show that the bagging estimator can achieve the optimal statistical efficiency, provided that the bagging subsample size and the number of subsamples are sufficiently large. Moreover, we derive a variance estimator for valid asymptotic inference. All theoretical findings are further verified by extensive simulation studies. Finally, we apply the bagging method to the US Airline Dataset to demonstrate its practical usefulness.


翻译:袋装是一种可用于大规模统计分析的有效方法,特别是当计算资源非常有限时。我们在此研究了用于带有大型数据集的M-估计问题的袋装估计器的渐近性质。我们在适当条件下理论证明了得到的估计器是一致和渐近正态的。结果表明,只要袋装子样本大小和子样本数量足够大,袋装估计器就可以达到最优的统计效率。此外,我们为有效的渐近推断导出了一个方差估计器。通过广泛的仿真研究进一步验证了所有的理论发现。最后,我们将袋装方法应用于美国航空数据集以展示其实用性。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
20+阅读 · 2021年7月28日
专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
50+阅读 · 2020年12月14日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员