Most of stereo vision works are focusing on computing the dense pixel disparity of a given pair of left and right images. A camera pair usually required lens undistortion and stereo calibration to provide an undistorted epipolar line calibrated image pair for accurate dense pixel disparity computation. Due to noise, object occlusion, repetitive or lack of texture and limitation of matching algorithms, the pixel disparity accuracy usually suffers the most at those object boundary areas. Although statistically the total number of pixel disparity errors might be low (under 2% according to the Kitti Vision Benchmark of current top ranking algorithms), the percentage of these disparity errors at object boundaries are very high. This renders the subsequence 3D object distance detection with much lower accuracy than desired. This paper proposed a different approach for solving a 3D object distance detection by detecting object disparity directly without going through a dense pixel disparity computation. An example squeezenet Object Disparity-SSD (OD-SSD) was constructed to demonstrate an efficient object disparity detection with comparable accuracy compared with Kitti dataset pixel disparity ground truth. Further training and testing results with mixed image dataset captured by several different stereo systems may suggest that an OD-SSD might be agnostic to stereo system parameters such as a baseline, FOV, lens distortion, even left/right camera epipolar line misalignment.


翻译:大多数立体视觉作品都侧重于计算某对左和右图像的密度像素差异。 相片对像通常需要透镜不扭曲和立体校准, 以提供非扭曲的上极线校准图像配对, 以精确密度像素差异计算。 由于噪音、 对象隔绝、 重复或缺乏质谱以及匹配算法的限制, 像素差异的准确性通常在这些对象边界区域受影响最大。 虽然从统计上看, 像素差异错误的总数可能较低( 根据当前最高等级算法基迪视野基准, 低于2%), 但目标边界差异错误的百分比非常高。 这使得子序列 3D 天体距离探测比预期的准确性要低得多。 本文提出了一种不同的方法, 直接探测对象差异, 而不进行密度像素差异计算。 例如, 挤压网 对象差异- SSD (OD- SD- SD) 构建了一个有效的对象差异检测, 与基级数据定线比较, 甚至比比比比比基地变等差异地算算法的精确度差率率非常高。, 通过进一步的培训和测试结果系统显示, ASVDSD 系统, 可能以不同的图像测测测为一种混合的图像系统, 。 。

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
专知会员服务
32+阅读 · 2021年9月16日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
生成式对抗网络GAN异常检测
专知会员服务
115+阅读 · 2019年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
9+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员