The recent neural implicit representation-based methods have greatly advanced the state of the art for solving the long-standing and challenging problem of reconstructing a discrete surface from a sparse point cloud. These methods generally learn either a binary occupancy or signed/unsigned distance field (SDF/UDF) as surface representation. However, existing SDF/UDF-based methods use neural networks to implicitly regress the distance in a purely data-driven manner, thus limiting the accuracy and generalizability to some extent. In contrast, we propose the first geometry-guided method for UDF and its gradient estimation that explicitly formulates the unsigned distance of a query point as the learnable affine averaging of its distances to the tangent planes of neighbouring points. Besides, we model the local geometric structure of the input point clouds by explicitly learning a quadratic polynomial for each point. This not only facilitates upsampling the input sparse point cloud but also naturally induces unoriented normal, which further augments UDF estimation. Finally, to extract triangle meshes from the predicted UDF we propose a customized edge-based marching cube module. We conduct extensive experiments and ablation studies to demonstrate the significant advantages of our method over state-of-the-art methods in terms of reconstruction accuracy, efficiency, and generalizability. The source code is publicly available at https://github.com/rsy6318/GeoUDF.
翻译:最近以神经隐含代表为基础的神经系统方法极大地提高了解决从稀疏的云层重建离散表面的长期和具有挑战性的问题的先进水平,这些方法通常学习二进制占用或签名/未签名的距离场(SDF/UDF)作为表面代表;然而,现有的SDF/UDF-基于神经网络使用神经网络,以纯数据驱动的方式隐含地使距离倒退,从而限制输入点云层的准确性和普遍性。相比之下,我们提议为UDF及其梯度估计采用第一个几何制导方法,明确提出一个未标明的查询点距离,作为其与相近点相向相近方向距离的平均距离。此外,我们通过明确学习每个点的四进制多元多数值来模拟输入点云的局部几何结构。这不仅有助于扩大输入点云层的采样,而且自然地诱导出不方向正常,从而进一步增加UDF的估计。最后,从预测的UDF中提取三角线段的距离,作为我们提议的在公开边际/方向方向方向方向方向上选择的精确度,我们提议在可选择的基面结构模块上进行重大的精确度分析。我们进行广泛的结构分析,在一般的基面上对现有工具中,我们进行广泛的分析的精确度分析。我们进行广泛的试验和常规分析,在一般的源源的精确性分析。