We propose two novel loss functions based on Jensen-Shannon divergence for learning under label noise. Following the work of Ghosh et al. (2017), we argue about their theoretical robustness. Furthermore, we reveal several other desirable properties by drawing informative connections to various loss functions, e.g., cross entropy, mean absolute error, generalized cross entropy, symmetric cross entropy, label smoothing, and most importantly consistency regularization. We conduct extensive and systematic experiments using both synthetic (CIFAR) and real (WebVision) noise and demonstrate significant and consistent improvements over other loss functions. Also, we conduct several informative side experiments that highlight the different theoretical properties.
翻译:我们提出基于Jensen-Shannon差异的两种新的损失功能,用于在标签噪音下学习。在Ghosh等人(2017年)的工作之后,我们争论了它们的理论强健性。此外,我们通过与各种损失功能建立信息联系,例如交叉环球、平均绝对误差、通用交叉环球、对称交叉环球、平滑标签,以及最重要的是一致性规范化等,揭示了其他一些可取的特性。我们利用合成(CIFAR)和真实(WebVision)噪音进行广泛和系统的实验,并展示了相对于其他损失功能的重大和一致的改进。此外,我们还进行了一些突出不同理论属性的信息边实验。