We consider the infinite-horizon LQR control problem. Motivated by competitive analysis in online learning, as a criterion for controller design we introduce the dynamic regret, defined as the difference between the LQR cost of a causal controller (that has only access to past disturbances) and the LQR cost of the \emph{unique} clairvoyant one (that has also access to future disturbances) that is known to dominate all other controllers. The regret itself is a function of the disturbances, and we propose to find a causal controller that minimizes the worst-case regret over all bounded energy disturbances. The resulting controller has the interpretation of guaranteeing the smallest regret compared to the best non-causal controller that can see the future. We derive explicit formulas for the optimal regret and for the regret-optimal controller for the state-space setting. These explicit solutions are obtained by showing that the regret-optimal control problem can be reduced to a Nehari extension problem that can be solved explicitly. The regret-optimal controller is shown to be linear and can be expressed as the sum of the classical $H_2$ state-feedback law and an $n$-th order controller ($n$ is the state dimension), and its construction simply requires a solution to the standard LQR Riccati equation and two Lyapunov equations. Simulations over a range of plants demonstrate that the regret-optimal controller interpolates nicely between the $H_2$ and the $H_\infty$ optimal controllers, and generally has $H_2$ and $H_\infty$ costs that are simultaneously close to their optimal values. The regret-optimal controller thus presents itself as a viable option for control systems design.


翻译:我们考虑无限时域下的LQR控制问题。受在线学习中竞争分析的启发,我们引入动态遗憾作为控制器设计的标准,动态遗憾定义为一个因果控制器(只能访问过去扰动的控制器)和已知优于所有其他控制器的全知控制器(也可以访问未来扰动的控制器)之间的LQR代价差。遗憾本身是扰动的函数,我们建议找到一种因果控制器,使其在所有有界总能量扰动下,最小化最坏情况下的遗憾。所得到的控制器具有保证相对于能够看到未来的最佳非因果控制器遗憾最小的解释。我们导出了状态空间设置下最佳遗憾和遗憾最优控制器的显式公式。通过证明遗憾最优控制问题可以被简化为可以显式求解的Nehari扩展问题,得到这些显式解。遗憾最优控制器被证明是线性的,可以被表达为经典的H_2状态反馈法和一个n阶控制器(其中n是状态维数)之和,其构造仅需要标准的LQR Riccati方程和两个Lyapunov方程的解。针对一系列系统的模拟说明了遗憾最优控制器在H_2和H_\infty最优控制器间表现良好,且该控制器通常同时具有接近其最优值的H_2和H_\infty。因此,遗憾最优控制器是舒适的控制系统设计选择。

0
下载
关闭预览

相关内容

【ETH、Stanford】基于博弈论的运动规划,Tutorial ICRA '21
专知会员服务
55+阅读 · 2022年3月7日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月29日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员