Let $(X_t)_{t \ge 0}$ be solution of a one-dimensional stochastic differential equation. Our aim is to study the convergence rate for the estimation of the invariant density in intermediate regime, assuming that a discrete observation of the process $(X_t)_{t \in [0, T]}$ is available, when $T$ tends to $\infty$. We find the convergence rates associated to the kernel density estimator we proposed and a condition on the discretization step $\Delta_n$ which plays the role of threshold between the intermediate regime and the continuous case. In intermediate regime the convergence rate is $n^{- \frac{2 \beta}{2 \beta + 1}}$, where $\beta$ is the smoothness of the invariant density. After that, we complement the upper bounds previously found with a lower bound over the set of all the possible estimator, which provides the same convergence rate: it means it is not possible to propose a different estimator which achieves better convergence rates. This is obtained by the two hypothesis method; the most challenging part consists in bounding the Hellinger distance between the laws of the two models. The key point is a Malliavin representation for a score function, which allows us to bound the Hellinger distance through a quantity depending on the Malliavin weight.
翻译:Lets(X_t)\\ t\ ge 0} 美元是单维随机差异方程式的解决方案 。 我们的目标是研究中间机制中差异密度估算的趋同率, 假设当$T倾向于以美元为美元时, 可以对进程进行离散观测$(X_ t)\ t\ t\ 在 [0, T]}$, 当$T倾向于以美元为美元时, 美元( 美元) 美元( 美元) 美元( ge 0) 。 我们发现与我们提议的内核密度估计值相关的趋同率, 以及离散步骤中中间制度和连续案例之间门槛作用的条件$( Delta_ n) 。 在中间机制中, 趋同率是 $( $-\\\ frac ) { 2\ beta + 1 $( + 美元) 。 假设 $\beta $( 美元) 是变量密度的平滑度 。 之后, 我们用所有可能的估测算器的组合来补充先前的上限, 提供相同的趋同率: 意味着不可能提出一个不同的估测算出一个不同的估定 两次的离差法。