The presence of software vulnerabilities is an ever-growing issue in software development. In most cases, it is desirable to detect vulnerabilities as early as possible, preferably in a just-in-time manner, when the vulnerable piece is added to the code base. The industry has a hard time combating this problem as manual inspection is costly and traditional means, such as rule-based bug detection, are not robust enough to follow the pace of the emergence of new vulnerabilities. The actively researched field of machine learning could help in such situations as models can be trained to detect vulnerable patterns. However, machine learning models work well only if the data is appropriately represented. In our work, we propose a novel way of representing changes in source code (i.e. code commits), the Code Change Tree, a form that is designed to keep only the differences between two abstract syntax trees of Java source code. We compared its effectiveness in predicting if a code change introduces a vulnerability against multiple representation types and evaluated them by a number of machine learning models as a baseline. The evaluation is done on a novel dataset that we published as part of our contributions using a 2-phase dataset generator method. Based on our evaluation we concluded that using Code Change Tree is a valid and effective choice to represent source code changes as it improves performance.


翻译:软件漏洞的存在是软件开发中不断增长的问题。在大多数情况下,尽早检测漏洞是可取的,最好是在漏洞存在的代码被添加到代码库中时进行即时检测。工业界在解决这个问题时遇到了困难,因为手工检查代价高昂,传统手段如基于规则的漏洞检测并不足以跟上新漏洞的涌现速度。机器学习领域能够在这种情况下帮助,因为可以训练模型来检测漏洞模式。然而,机器学习模型只有数据被正确表示才能发挥良好的作用。在我们的工作中,我们提出了一种新颖的表示源代码变更方式:代码改变树。这种形式旨在仅保留Java源代码的两个抽象语法树之间的差异。我们将其与多种表示类型的效果进行了比较,并通过多种机器学习模型作为基准进行了评估。我们使用二阶段数据集生成器方法评估了这个方法,并发布了一个新的数据集,基于我们的评估,我们得出结论:使用代码改变树作为源代码变更的有效表示方法可以提高性能。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
八篇NeurIPS 2019【图神经网络(GNN)】相关论文
专知会员服务
43+阅读 · 2020年1月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
八篇NeurIPS 2019【图神经网络(GNN)】相关论文
专知会员服务
43+阅读 · 2020年1月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员