The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is a subject of great importance for the numerical solution of Poisson's equation and volume integral equations. Complicated domains typically require discretization by unstructured meshes, over which the direct evaluation of the potential by quadrature becomes costly. In this paper, we present a simple and effective algorithm for computing Newtonian potentials, based on the use of Green's third identity for transforming the volume integral into a collection of boundary integrals, which can then be easily handled by the Helsing-Ojala method. As a result, the time cost of the classically expensive near field and self-interaction computations over an unstructured mesh becomes roughly the same as the time cost of the FMM-based far field interaction computation. One of the key components of our algorithm is the high-order 2-D monomial expansion approximation of a function over a mesh element, which is often regarded as an ill-conditioned problem, since it involves the solution of a Vandermonde linear system. In fact, it has long been observed that, when the function is sufficiently smooth, and when an appropriate linear system solver is used, the resulting monomial expansion can approximate the function uniformly to high accuracy. We rigorously formalize this observation in this paper. The performance of our algorithm is illustrated through several numerical experiments.
翻译:对于Poisson的方程和体积整体方程的数值解决方案来说,精确而高效地评估Newtonian在一般 2D 域上的潜力是一个非常重要的主题。 复杂域通常需要由非结构化的 meshes 进行分解, 而对于这种分流直接评估潜力则成本高昂。 在本文中,我们提出了一个简单而有效的计算牛顿星潜力的算法, 其依据是使用Green的第三个身份将体积组合转换成一组边界整体体的集合, 然后很容易由Helsing- Ojala 方法处理。 因此, 典型昂贵的接近实地的计算和对非结构化的网目进行自我互动计算的时间成本通常与基于FMM的远方互动计算的时间成本大致相同。 我们的算法的关键组成部分之一是计算牛顿星潜力的高度顺序 2- D 单项扩展近似近似值, 这个功能通常被视为一个不成熟的问题, 因为它涉及Vandermonde- Ojala 线性系统的解决办法。 事实上, 长期观察和自我互动计算的时间成本性计算, 当我们这个稳定的系统被足够地使用时, 直态的精确的精确的计算, 当我们使用的系统可以使用一个稳定的计算, 当一个精确的精确的精确的计算时, 我们的精确的计算, 能够被使用这个精确的精确的计算, 我们的精确性能被使用。