项目名称: 具有退化奇点的微分系统的分岔与可积性

项目编号: No.11201211

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李锋

作者单位: 临沂大学

项目金额: 22万元

中文摘要: 本项目第一部分主要对几类具有退化奇点的微分系统进行研究.首先解决几类具有三阶幂零奇点的微分系统的Hopf分支问题,改进原有的一些结果,同时将逆积分因子的方法推广,研究具有高阶幂零奇点的多项式系统的广义Lyapunov常数的计算问题,在逆积分因子方法的基础上,进一步研究具有幂零奇点的平面多项式系统的解析可积性,解决一些系统的解析可积分类问题. 其次,通过几个重要的变换将具有退化奇点的系统化简为扰动的Hamiltonian系统,再运用Melnikov方法研究系统的同宿、异宿轨分支. 作为理论的应用,本项目第二部分主要研究奇异非线性波方程行波解分支问题. 在求解奇异非线性波方程的非光滑精确解的"三步法"基础之上,利用动力系统的分支理论以及第一部分的研究结果对转化后的非线性波系统的退化奇点的类型以及分岔和可积性进行研究,分析非光滑行波解出现的根本原因以及证明其存在的参数条件.

中文关键词: 极限环;分支;可积性;行波解;切换系统

英文摘要: In the first section of this project, some classes of differential equations with degenerate critical points will be investigated at first. The Hopf bifurcations of some differential system will be solved and some results will be improved. The method of inverse integral factor will be developed in order to be used for computations of Lyapunov constant at high-oeder nilpotent critical point. Furthermore, the method will be used to investigate the problem of analytic center at the nilpotent critical points, classfications of analytic integrability of some system will be completed. At the end of this section, some important transformations will be maken in order to change the system with degenerate crical points into Hamiltonian system, then the bifurcations of homoclinic and heteroclinic loops will be studied by the method of Melnikov. The second section is devoted to investigate the bifurcations of travalling wave solutions for nonlinear partial differential equations. With the help of "Three steps methods" and bifurcation theory of dynamical system and the results in first section, bifurcations and integrability at the degenerate critical point of nonlinear travlling system will be investigated. We will find the reasons of appearance of nonsmooth travelling wave solutions and the parameters conditions of e

英文关键词: limit cycle;bifurcation;integrability;tavelling wave solution;switching system

成为VIP会员查看完整内容
0

相关内容

【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
81+阅读 · 2022年1月7日
NeurIPS 2021 | 用简单的梯度下降算法逃离鞍点
专知会员服务
23+阅读 · 2021年12月6日
【博士论文】基于冲量的加速优化算法
专知会员服务
25+阅读 · 2021年11月29日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
47+阅读 · 2021年6月3日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
73+阅读 · 2020年12月7日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
WWW'22 | 图神经网络推荐系统的最新SOTA基准
图与推荐
4+阅读 · 2022年3月20日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
一文说清linux system load
阿里技术
0+阅读 · 2021年12月15日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关VIP内容
【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
81+阅读 · 2022年1月7日
NeurIPS 2021 | 用简单的梯度下降算法逃离鞍点
专知会员服务
23+阅读 · 2021年12月6日
【博士论文】基于冲量的加速优化算法
专知会员服务
25+阅读 · 2021年11月29日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
47+阅读 · 2021年6月3日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
73+阅读 · 2020年12月7日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
WWW'22 | 图神经网络推荐系统的最新SOTA基准
图与推荐
4+阅读 · 2022年3月20日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
一文说清linux system load
阿里技术
0+阅读 · 2021年12月15日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员