Snake robots composed of alternating single-axis pitch and yaw joints have many internal degrees of freedom, which make them capable of versatile three-dimensional locomotion. In motion planning process, snake robot motions are often designed kinematically by a chronological sequence of continuous backbone curves that capture desired macroscopic shapes of the robot. However, as the geometric arrangement of single-axis rotary joints creates constraints on the rotations in the robot, it is challenging for the robot to reconstruct an arbitrary 3D curve. When the robot configuration does not accurately achieve the desired shapes defined by these backbone curves, the robot can have unexpected contacts with the environment, such that the robot does not achieve the desired motion. In this work, we propose a method for snake robots to reconstruct desired backbone curves by posing an optimization problem that exploits the robot's geometric structure. We verified that our method enables fast and accurate curve-configuration conversions through its applications to commonly used 3D gaits. We also demonstrated via robot experiments that 1) our method results in smooth locomotion on the robot; 2) our method allows the robot to approach the numerically predicted locomotive performance of a sequence of continuous backbone curve.
翻译:由交替的单轴投球和 yaw 关节组成的蛇形机器人具有许多内部自由度, 使得它们能够具有多功能三维移动。 在运动规划过程中, 蛇形机器人运动通常通过连续脊柱曲线的时序序列进行动态设计, 以捕捉想要的大型机器人形状。 然而, 单轴旋转曲线的几何安排对机器人的旋转造成限制, 机器人重建一个任意的 3D 曲线是困难的。 当机器人配置不能准确地达到这些脊椎曲线所定义的预期形状时, 机器人可以与环境有意外的接触, 这样机器人就无法实现理想的动作。 在这项工作中, 我们提出一个方法, 使蛇形机器人能够通过利用机器人的几何测结构来重建所需的脊椎曲线。 我们验证了我们的方法能够通过对常用的 3D 队形应用来快速和准确的曲线配置转换。 我们还通过机器人实验来证明 :1) 我们的方法可以使机器人在机器人上平稳的旋转方向上产生结果; 2) 我们的方法使得机器人能够直径直地预测着基座的轨道。