In this work, we review the framework of the Virtual Element Method (VEM) for a model in magneto-hydrodynamics (MHD), that incorporates a coupling between electromagnetics and fluid flow, and allows us to construct novel discretizations for simulating realistic phenomenon in MHD. First, we study two chains of spaces approximating the electromagnetic and fluid flow components of the model. Then, we show that this VEM approximation will yield divergence free discrete magnetic fields, an important property in any simulation in MHD. We present a linearization strategy to solve the VEM approximation which respects the divergence free condition on the magnetic field. This linearization will require that, at each non-linear iteration, a linear system be solved. We study these linear systems and show that they represent well-posed saddle point problems. We conclude by presenting numerical experiments exploring the performance of the VEM applied to the subsystem describing the electromagnetics. The first set of experiments provide evidence regarding the speed of convergence of the method as well as the divergence-free condition on the magnetic field. In the second set we present a model for magnetic reconnection in a mesh that includes a series of hanging nodes, which we use to calibrate the resolution of the method. The magnetic reconnection phenomenon happens near the center of the domain where the mesh resolution is finer and high resolution is achieved.
翻译:在这项工作中,我们审查了磁流动力学模型(MHD)的虚拟元素法框架(VEM),该模型包括电磁流和流体流的混合,并使我们能够为模拟MHD中现实现象而建立新型的离散系统。首先,我们研究了两个空间链,这些空间链与电磁和流体流组成部分相近。然后,我们展示了这个VEM近似将产生离散的离散磁场,这是MHD中任何模拟中的重要属性。我们提出了一个线性化战略,以解决VEM近似,尊重磁场的离散条件。这种线性化将要求在每个非线性迭代中解决一个线性系统。我们研究这些线性系统,并表明它们代表着良好的马垫点问题。我们通过对电磁电磁流子子子子系应用的性能进行数字实验,第一组实验提供了该方法汇合速度的证据,以及磁场上无离散状态。在第二组设置的精细模型中,我们展示了磁再连接域的模型,而磁力再校正的模型则是中,其中的分辨率中,我们正正正正将有一个磁力再连接的模型。