In this work, we review the framework of the Virtual Element Method (VEM) for a model in magneto-hydrodynamics (MHD), that incorporates a coupling between electromagnetics and fluid flow, and allows us to construct novel discretizations for simulating realistic phenomenon in MHD. First, we study two chains of spaces approximating the electromagnetic and fluid flow components of the model. Then, we show that this VEM approximation will yield divergence free discrete magnetic fields, an important property in any simulation in MHD. We present a linearization strategy to solve the VEM approximation which respects the divergence free condition on the magnetic field. This linearization will require that, at each non-linear iteration, a linear system be solved. We study these linear systems and show that they represent well-posed saddle point problems. We conclude by presenting numerical experiments exploring the performance of the VEM applied to the subsystem describing the electromagnetics. The first set of experiments provide evidence regarding the speed of convergence of the method as well as the divergence-free condition on the magnetic field. In the second set we present a model for magnetic reconnection in a mesh that includes a series of hanging nodes, which we use to calibrate the resolution of the method. The magnetic reconnection phenomenon happens near the center of the domain where the mesh resolution is finer and high resolution is achieved.


翻译:在这项工作中,我们审查了磁流动力学模型(MHD)的虚拟元素法框架(VEM),该模型包括电磁流和流体流的混合,并使我们能够为模拟MHD中现实现象而建立新型的离散系统。首先,我们研究了两个空间链,这些空间链与电磁和流体流组成部分相近。然后,我们展示了这个VEM近似将产生离散的离散磁场,这是MHD中任何模拟中的重要属性。我们提出了一个线性化战略,以解决VEM近似,尊重磁场的离散条件。这种线性化将要求在每个非线性迭代中解决一个线性系统。我们研究这些线性系统,并表明它们代表着良好的马垫点问题。我们通过对电磁电磁流子子子子系应用的性能进行数字实验,第一组实验提供了该方法汇合速度的证据,以及磁场上无离散状态。在第二组设置的精细模型中,我们展示了磁再连接域的模型,而磁力再校正的模型则是中,其中的分辨率中,我们正正正正将有一个磁力再连接的模型。

0
下载
关闭预览

相关内容

专知会员服务
122+阅读 · 2021年3月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月2日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
专知会员服务
122+阅读 · 2021年3月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员