This study deals with two-dimensional (2D) signal processing using the wavelet packet transform. When the basis is unknown the candidate of basis increases in exponential order with respect to the signal size. Previous studies do not consider the basis as a random vaiables. Therefore, the cost function needs to be used to select a basis. However, this method is often a heuristic and a greedy search because it is impossible to search all the candidates for a huge number of bases. Therefore, it is difficult to evaluate the entire signal processing under a criterion and also it does not always gurantee the optimality of the entire signal processing. In this study, we propose a stochastic generative model in which the basis is regarded as a random variable. This makes it possible to evaluate entire signal processing under a unified criterion i.e. Bayes criterion. Moreover we can derive an optimal signal processing scheme that achieves the theoretical limit. This derived scheme shows that all the bases should be combined according to the posterior in stead of selecting a single basis. Although exponential order calculations is required for this scheme, we have derived a recursive algorithm for this scheme, which successfully reduces the computational complexity from the exponential order to the polynomial order.
翻译:此研究涉及使用波片包变换的二维(2D)信号处理。 当基数未知时, 基数会相对于信号大小的指数顺序增长。 以前的研究不将基数视为随机可变数据。 因此, 成本函数需要用于选择一个基数。 但是, 这种方法往往是一种超常和贪婪的搜索, 因为无法在大量基数中搜索所有候选人。 因此, 很难在标准下评估整个信号处理过程, 而且它也并不总是将整个信号处理的优化化为光学。 在这次研究中, 我们提出了一个随机变异模型, 将基数视为随机变量。 这样可以根据统一的标准, 即 Bayes 标准来评估整个信号处理过程。 此外, 我们可以得出一个最佳的信号处理方案, 从而达到理论限制 。 这个衍生的方案显示, 所有基数应该与后方相混合, 而不是选择一个单一基数。 尽管这个方案需要指数顺序计算, 我们为这个方案制定了一个递归的遗传算法, 它将成功地从一个指数序列中降低 。