Additive spatial statistical models with weakly stationary process assumptions have become standard in spatial statistics. However, one disadvantage of such models is the computation time, which rapidly increases with the number of datapoints. The goal of this article is to apply an existing subsampling strategy to standard spatial additive models and to derive the spatial statistical properties. We call this strategy the ``spatial data subset model'' approach, which can be applied to big datasets in a computationally feasible way. Our approach has the advantage that one does not require any additional restrictive model assumptions. That is, computational gains increase as model assumptions are removed when using our model framework. This provides one solution to the computational bottlenecks that occur when applying methods such as Kriging to ``big data''. We provide several properties of this new spatial data subset model approach in terms of moments, sill, nugget, and range under several sampling designs. The biggest advantage of our approach is that it is scalable to a dataset of any size that can be stored. We present the results of the spatial data subset model approach on simulated datasets, and on a large dataset consists of 150,000 observations of daytime land surface temperatures measured by the MODIS instrument onboard the Terra satellite.
翻译:暂无翻译