Modular robots offer reconfigurability and fault tolerance essential for lunar missions, but require controllers that adapt safely to real-world disturbances. We build on our previous hardware-agnostic actuator synchronization in Motion Stack to develop a new controller enforcing adaptive velocity bounds via a dynamic hypersphere clamp. Using only real-time end-effector and target pose measurements, the controller adjusts its translational and rotational speed limits to ensure smooth, stable alignment without abrupt motions. We implemented two variants, a discrete, step-based version and a continuous, velocity-based version, and tested them on two MoonBot limbs in JAXA's lunar environment simulator. Field trials demonstrate that the step-based variant produces highly predictable, low-wobble motions, while the continuous variant converges more quickly and maintains millimeter-level positional accuracy, and both remain robust across limbs with differing mechanical imperfections and sensing noise (e.g., backlash and flex). These results highlight the flexibility and robustness of our robot-agnostic framework for autonomous self-assembly and reconfiguration under harsh conditions.


翻译:模块化机器人具备月球任务所需的重构能力和容错性,但需要能够安全适应现实世界扰动的控制器。我们在先前Motion Stack中硬件不可知的执行器同步基础上,开发了一种通过动态超球面钳位实现自适应速度边界的新控制器。该控制器仅利用实时末端执行器与目标位姿测量数据,动态调整其平动与旋转速度限制,确保平稳稳定的对准而无突变运动。我们实现了两种变体:基于步长的离散版本和基于速度的连续版本,并在JAXA月球环境模拟器中使用两个MoonBot肢体进行了测试。现场试验表明:步长变体能产生高度可预测、低抖动的运动,而连续变体收敛速度更快且能保持毫米级位置精度;两种变体在不同机械缺陷(如背隙和柔性)与传感噪声的肢体上均保持鲁棒性。这些结果凸显了我们机器人不可知框架在严苛条件下实现自主自组装与重构的灵活性和鲁棒性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员